Rocket trajectory optimization
File: rocket_trajectory_optimization.html (click for a live demo)
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>math.js | rocket trajectory optimization</title>
<script src="https://unpkg.com/mathjs@14.0.1/lib/browser/math.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.5.0/Chart.min.js"></script>
<style>
body {
font-family: sans-serif;
}
#canvas-grid {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 5%;
margin-top: 5%;
}
#canvas-grid>div {
overflow: hidden;
}
</style>
</head>
<body>
<h1>Rocket trajectory optimization</h1>
<p>
This example simulates the launch of a SpaceX Falcon 9 modeled using a system of ordinary differential equations.
</p>
<canvas id="canvas" width="1600" height="600"></canvas>
<div id="canvas-grid"></div>
<script>
// Solve ODE `dx/dt = f(x,t), x(0) = x0` numerically.
function ndsolve(f, x0, dt, tmax) {
let x = x0.clone() // Current values of variables
const result = [x] // Contains entire solution
const nsteps = math.divide(tmax, dt) // Number of time steps
for (let i = 0; i < nsteps; i++) {
// Compute derivatives
const dxdt = f.map(func => func(...x.toArray()))
// Euler method to compute next time step
const dx = math.multiply(dxdt, dt)
x = math.add(x, dx)
result.push(x)
}
return math.matrix(result)
}
// Import the numerical ODE solver
math.import({ ndsolve })
// Create a math.js context for our simulation. Everything else occurs in the context of the expression parser!
const sim = math.parser()
sim.evaluate("G = 6.67408e-11 m^3 kg^-1 s^-2") // Gravitational constant
sim.evaluate("mbody = 5.9724e24 kg") // Mass of Earth
sim.evaluate("mu = G * mbody") // Standard gravitational parameter
sim.evaluate("g0 = 9.80665 m/s^2") // Standard gravity: used for calculating prop consumption (dmdt)
sim.evaluate("r0 = 6371 km") // Mean radius of Earth
sim.evaluate("t0 = 0 s") // Simulation start
sim.evaluate("dt = 0.5 s") // Simulation timestep
sim.evaluate("tfinal = 149.5 s") // Simulation duration
sim.evaluate("isp_sea = 282 s") // Specific impulse (at sea level)
sim.evaluate("isp_vac = 311 s") // Specific impulse (in vacuum)
sim.evaluate("gamma0 = 89.99970 deg") // Initial pitch angle (90 deg is vertical)
sim.evaluate("v0 = 1 m/s") // Initial velocity (must be non-zero because ODE is ill-conditioned)
sim.evaluate("phi0 = 0 deg") // Initial orbital reference angle
sim.evaluate("m1 = 433100 kg") // First stage mass
sim.evaluate("m2 = 111500 kg") // Second stage mass
sim.evaluate("m3 = 1700 kg") // Third stage / fairing mass
sim.evaluate("mp = 5000 kg") // Payload mass
sim.evaluate("m0 = m1+m2+m3+mp") // Initial mass of rocket
sim.evaluate("dm = 2750 kg/s") // Mass flow rate
sim.evaluate("A = (3.66 m)^2 * pi") // Area of the rocket
sim.evaluate("dragCoef = 0.2") // Drag coefficient
// Define the equations of motion. We just thrust into current direction of motion, e.g. making a gravity turn.
sim.evaluate("gravity(r) = mu / r^2")
sim.evaluate("angVel(r, v, gamma) = v/r * cos(gamma) * rad") // Angular velocity of rocket around moon
sim.evaluate("density(r) = 1.2250 kg/m^3 * exp(-g0 * (r - r0) / (83246.8 m^2/s^2))") // Assume constant temperature
sim.evaluate("drag(r, v) = 1/2 * density(r) .* v.^2 * A * dragCoef")
sim.evaluate("isp(r) = isp_vac + (isp_sea - isp_vac) * density(r)/density(r0)") // pressure ~ density for constant temperature
sim.evaluate("thrust(isp) = g0 * isp * dm")
// It is important to maintain the same argument order for each of these functions.
sim.evaluate("drdt(r, v, m, phi, gamma, t) = v sin(gamma)")
sim.evaluate("dvdt(r, v, m, phi, gamma, t) = - gravity(r) * sin(gamma) + (thrust(isp(r)) - drag(r, v)) / m")
sim.evaluate("dmdt(r, v, m, phi, gamma, t) = - dm")
sim.evaluate("dphidt(r, v, m, phi, gamma, t) = angVel(r, v, gamma)")
sim.evaluate("dgammadt(r, v, m, phi, gamma, t) = angVel(r, v, gamma) - gravity(r) * cos(gamma) / v * rad")
sim.evaluate("dtdt(r, v, m, phi, gamma, t) = 1")
// Remember to maintain the same variable order in the call to ndsolve.
sim.evaluate("result_stage1 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], [r0, v0, m0, phi0, gamma0, t0], dt, tfinal)")
// Reset initial conditions for interstage flight
sim.evaluate("dm = 0 kg/s")
sim.evaluate("tfinal = 10 s")
sim.evaluate("x = flatten(result_stage1[end,:])")
sim.evaluate("x[3] = m2+m3+mp") // New mass after stage seperation
sim.evaluate("result_interstage = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
// Reset initial conditions for stage 2 flight
sim.evaluate("dm = 270.8 kg/s")
sim.evaluate("isp_vac = 348 s")
sim.evaluate("tfinal = 350 s")
sim.evaluate("x = flatten(result_interstage[end,:])")
sim.evaluate("result_stage2 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
// Reset initial conditions for unpowered flight
sim.evaluate("dm = 0 kg/s")
sim.evaluate("tfinal = 900 s")
sim.evaluate("dt = 10 s")
sim.evaluate("x = flatten(result_stage2[end,:])")
sim.evaluate("result_unpowered1 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
// Reset initial conditions for final orbit insertion
sim.evaluate("dm = 270.8 kg/s")
sim.evaluate("tfinal = 39 s")
sim.evaluate("dt = 0.5 s")
sim.evaluate("x = flatten(result_unpowered1[end,:])")
sim.evaluate("result_insertion = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
// Reset initial conditions for unpowered flight
sim.evaluate("dm = 0 kg/s")
sim.evaluate("tfinal = 250 s")
sim.evaluate("dt = 10 s")
sim.evaluate("x = flatten(result_insertion[end,:])")
sim.evaluate("result_unpowered2 = ndsolve([drdt, dvdt, dmdt, dphidt, dgammadt, dtdt], x, dt, tfinal)")
// Now it's time to prepare results for plotting
const resultNames = ['stage1', 'interstage', 'stage2', 'unpowered1', 'insertion', 'unpowered2']
.map(stageName => `result_${stageName}`)
// Concat result matrices
sim.set('result',
math.concat(
...resultNames.map(resultName =>
sim.evaluate(`${resultName}[:end-1, :]`) // Avoid overlap
),
0 // Concat in row-dimension
)
)
const mainDatasets = resultNames.map((resultName, i) => ({
label: resultName.slice(7),
data: sim.evaluate(
'concat('
+ `(${resultName}[:,4] - phi0) * r0 / rad / km,` // Surface distance from start (in km)
+ `(${resultName}[:,1] - r0) / km` // Height above surface (in km)
+ ')'
).toArray().map(([x, y]) => ({ x, y })),
borderColor: i % 2 ? '#999' : '#dc3912',
fill: false,
pointRadius: 0,
}))
new Chart(document.getElementById('canvas'), {
type: 'line',
data: { datasets: mainDatasets },
options: getMainChartOptions()
})
createChart([{
label: 'velocity (in m/s)',
data: sim.evaluate("result[:,[2,6]]")
.toArray()
.map(([v, t]) => ({ x: t.toNumber('s'), y: v.toNumber('m/s') }))
}])
createChart([{
label: 'height (in km)',
data: sim.evaluate("concat((result[:, 1] - r0), result[:, 6])")
.toArray()
.map(([r, t]) => ({ x: t.toNumber('s'), y: r.toNumber('km') })),
}])
createChart([{
label: 'gamma (in deg)',
data: sim.evaluate("result[:, [5,6]]")
.toArray()
.map(([gamma, t]) => ({ x: t.toNumber('s'), y: gamma.toNumber('deg') })),
}])
createChart([{
label: 'acceleration (in m/s^2)',
data: sim.evaluate("concat(diff(result[:, 2]) ./ diff(result[:, 6]), result[:end-1, 6])")
.toArray()
.map(([acc, t]) => ({ x: t.toNumber('s'), y: acc.toNumber('m/s^2') })),
}])
createChart([{
label: 'drag acceleration (in m/s^2)',
data: sim.evaluate('result')
.toArray()
.map(([r, v, m, phi, gamma, t]) => ({
x: t.toNumber('s'),
y: sim.evaluate(`drag(${r},${v})/${m}`).toNumber('m/s^2')
}))
}])
createChart(
[
{
data: sim.evaluate("result[:, [1,4]]")
.toArray()
.map(([r, phi]) => math.rotate([r.toNumber('km'), 0], phi))
.map(([x, y]) => ({ x, y })),
},
{
data: sim.evaluate("map(0:0.25:360, function(angle) = rotate([r0/km, 0], angle))")
.toArray()
.map(([x, y]) => ({ x, y })),
borderColor: "#999",
fill: true
}
],
getEarthChartOptions()
)
// Helper functions for plotting data (nothing to learn about math.js from here on)
function createChart(datasets, options = {}) {
const container = document.createElement("div")
document.querySelector("#canvas-grid").appendChild(container)
const canvas = document.createElement("canvas")
container.appendChild(canvas)
new Chart(canvas, {
type: 'line',
data: {
datasets: datasets.map(dataset => ({
borderColor: "#dc3912",
fill: false,
pointRadius: 0,
...dataset
}))
},
options: getChartOptions(options)
})
}
function getMainChartOptions() {
return {
scales: {
xAxes: [{
type: 'linear',
position: 'bottom',
scaleLabel: {
display: true,
labelString: 'surface distance travelled (in km)'
}
}],
yAxes: [{
type: 'linear',
scaleLabel: {
display: true,
labelString: 'height above surface (in km)'
}
}]
},
animation: false
}
}
function getChartOptions(options) {
return {
scales: {
xAxes: [{
type: 'linear',
position: 'bottom',
scaleLabel: {
display: true,
labelString: 'time (in s)'
}
}]
},
animation: false,
...options
}
}
function getEarthChartOptions() {
return {
aspectRatio: 1,
scales: {
xAxes: [{
type: 'linear',
position: 'bottom',
min: -8000,
max: 8000,
display: false
}],
yAxes: [{
type: 'linear',
min: -8000,
max: 8000,
display: false
}]
},
legend: { display: false }
}
}
</script>
</body>
</html>